Unsupervised Multi-Target Domain Adaptation: An Information Theoretic Approach
نویسندگان
چکیده
منابع مشابه
Information-theoretic Multi-view Domain Adaptation
We use multiple views for cross-domain document classification. The main idea is to strengthen the views’ consistency for target data with source training data by identifying the correlations of domain-specific features from different domains. We present an Information-theoretic Multi-view Adaptation Model (IMAM) based on a multi-way clustering scheme, where word and link clusters can draw toge...
متن کاملUnsupervised Model Adaptation using Information-Theoretic Criterion
In this paper we propose a novel general framework for unsupervised model adaptation. Our method is based on entropy which has been used previously as a regularizer in semi-supervised learning. This technique includes another term which measures the stability of posteriors w.r.t model parameters, in addition to conditional entropy. The idea is to use parameters which result in both low conditio...
متن کاملUnsupervised Multi-Domain Adaptation with Feature Embeddings
Representation learning is the dominant technique for unsupervised domain adaptation, but existing approaches have two major weaknesses. First, they often require the specification of “pivot features” that generalize across domains, which are selected by taskspecific heuristics. We show that a novel but simple feature embedding approach provides better performance, by exploiting the feature tem...
متن کاملOvercoming Dataset Bias: An Unsupervised Domain Adaptation Approach
Recent studies have shown that recognition datasets are biased. Paying no heed to those biases, learning algorithms often result in classifiers with poor crossdataset generalization. We are developing domain adaptation techniques to overcome those biases and yield classifiers with significantly improved performance when generalized to new testing datasets. Our work enables us to continue to har...
متن کاملAn unsupervised deep domain adaptation approach for robust speech recognition
This paper addresses the robust speech recognition problem as a domain adaptation task. Specifically, we introduce an unsupervised deep domain adaptation (DDA) approach to acoustic modeling in order to eliminate the training–testing mismatch that is common in real-world use of speech recognition. Under a multi-task learning framework, the approach jointly learns two discriminative classifiers u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2020
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2019.2963389